
Workshop “Experiencing
Domain Driven Design”

Summary

29-sept-2014

 

 

javascript:void(0);


Workshop Experiencing Domain Driven
Design

•  Cursusgever: Mattias Verraes http://verraes.net/#talks

•  "Workshop" van drie dagen.

•  Programma dag 1: Intro / Systems thinking, Event storming..

•  Programma dag 2 (n.a.v. voting): "Heuristics", Boeken, Context mapping.

•  Programma dag 3: Event sourcing, CQRS, Event store, Model storming.

2

http://verraes.net/#talks
https://cppse.nl/tdcug/%3Ci%3E%3C/i%3Ekindle.amazon.com%3Ci%3Eprofile%3C/i%3EMathias-Verraes%3Ci%3E722986%3C/i%3Eread


Domain Driven Design

3



Domain Driven Design Summary
•  Summary "Domain Driven Design Quickly"

4

http://%3Ci%3E%3C/i%3Ewww.infoq.com%3Ci%3Eminibooks%3C/i%3Edomain-driven-design-quickly


DDD
•  Supple design

•  Declarative design

•  Refactoring

•  Bounded contexts

•  Distillation

•  Large-scale structure

•  Modelling whirlpool

•  Model storming

5



Event storming
•  Alberto Brandolini (link: here)

•  Important events for the

business.

•  Events ==> Past tense and in the

Ubiquitious language.

•  No consensus first, better to have

alternatives.

6

http://ziobrando.blogspot.nl/2013/11/introducing-event-storming.html#.VAcsld-SaYM


7



1) Find Domain Events

8



1) Find Domain Events
•  Happened in the past (expressed in past form: A car was rented,

Customer has subscribed)

9



1) Find Domain Events
•  Happened in the past (expressed in past form: A car was rented,

Customer has subscribed)

•  Interest the business

10



1) Find Domain Events
•  Happened in the past (expressed in past form: A car was rented,

Customer has subscribed)

•  Interest the business

•  Expressed in Ubiquitous language

11



1) Find Domain Events
•  Happened in the past (expressed in past form: A car was rented,

Customer has subscribed)

•  Interest the business

•  Expressed in Ubiquitous language

NO technical events like Network is down, Transaction has failed...

12



13



2) Find Commands
•  Expressed in imperative phrase (Rent a car, Subscribe..)

14



2) Find Commands
•  Expressed in imperative phrase (Rent a car, Subscribe..)

•  They express intent/cause for the business

15



2) Find Commands
•  Expressed in imperative phrase (Rent a car, Subscribe..)

•  They express intent/cause for the business

•  They can fail

16



2) Find Commands
•  Expressed in imperative phrase (Rent a car, Subscribe..)

•  They express intent/cause for the business

•  They can fail

•  Multiple outcomes (including exceptions)

17



2) Find Commands
•  Expressed in imperative phrase (Rent a car, Subscribe..)

•  They express intent/cause for the business

•  They can fail

•  Multiple outcomes (including exceptions)

•  Possible sources: human, time, process.

18



19



3) Discover Bounded Contexts
•  Explicit boundary between domain models.

20



3) Discover Bounded Contexts
•  Explicit boundary between domain models.

•  Each context has it's unique ubiquitious language

21



3) Discover Bounded Contexts
•  Explicit boundary between domain models.

•  Each context has it's unique ubiquitious language

•  Example: Fleet Management, Scheduling, ..

22



23



4) Find Business rules / decisions
•  Put them on the map to make the different scenarios explicit

24



4) Find Business rules / decisions
•  Put them on the map to make the different scenarios explicit

•  Example: An already cancelled reservation cannot be cancelled anymore

25



5) Group events that influence decision

26



6) Discover & experiment with aggregate
boundaries

•  Aggregate is a group of objects that work together and are treated as a

unit.

27



6) Discover & experiment with aggregate
boundaries

•  Aggregate is a group of objects that work together and are treated as a

unit.

•  Provide a specific functionality.

28



6) Discover & experiment with aggregate
boundaries

•  Aggregate is a group of objects that work together and are treated as a

unit.

•  Provide a specific functionality.

•  *Transactional*

29



6) Discover & experiment with aggregate
boundaries

•  Aggregate is a group of objects that work together and are treated as a

unit.

•  Provide a specific functionality.

•  *Transactional*

•  *Cohesive*

30



Heuristics
Heuristics are different approaches we want to confront with while

building our models so that we can push our mind to influence our

design in different directions.

31



Heuristics
Heuristics are different approaches we want to confront with while

building our models so that we can push our mind to influence our

design in different directions. All those heuristics lead us to try different

models and throw them away at each time until we are happy with our

model.

32



Heuristics 1/5
•  Stable (static data) vs Volatile (changing data);

33



Heuristics 1/5
•  Stable (static data) vs Volatile (changing data);

•  Type (hierarchy of objects) vs Properties (of an object);

34



Heuristics 1/5
•  Stable (static data) vs Volatile (changing data);

•  Type (hierarchy of objects) vs Properties (of an object);

•  Actor vs Roles;

35



Heuristics 1/5
•  Stable (static data) vs Volatile (changing data);

•  Type (hierarchy of objects) vs Properties (of an object);

•  Actor vs Roles;

•  Change together vs change separately;

36



Heuristics 1/5
•  Stable (static data) vs Volatile (changing data);

•  Type (hierarchy of objects) vs Properties (of an object);

•  Actor vs Roles;

•  Change together vs change separately;

•  Different lifecycle dependencies;

37



Heuristics 1/5
•  Stable (static data) vs Volatile (changing data);

•  Type (hierarchy of objects) vs Properties (of an object);

•  Actor vs Roles;

•  Change together vs change separately;

•  Different lifecycle dependencies;

•  Immutable vs Mutable;

38



Heuristics 1/5
•  Stable (static data) vs Volatile (changing data);

•  Type (hierarchy of objects) vs Properties (of an object);

•  Actor vs Roles;

•  Change together vs change separately;

•  Different lifecycle dependencies;

•  Immutable vs Mutable;

•  Immutability within a context only;

39



Heuristics 1/5
•  Stable (static data) vs Volatile (changing data);

•  Type (hierarchy of objects) vs Properties (of an object);

•  Actor vs Roles;

•  Change together vs change separately;

•  Different lifecycle dependencies;

•  Immutable vs Mutable;

•  Immutability within a context only;

•  Retroactive Business rules;

40



Heuristics 2/5
•  Cohesive vs Decoupled;

41



Heuristics 2/5
•  Cohesive vs Decoupled;

•  Afferent coupling (things that are coupled to me) vs Efferent coupling

(things that I couple to); Noun < Sentences < Phrases;

42



Heuristics 2/5
•  Cohesive vs Decoupled;

•  Afferent coupling (things that are coupled to me) vs Efferent coupling

(things that I couple to); Noun < Sentences < Phrases;

•  Follow the money;

43



Heuristics 2/5
•  Cohesive vs Decoupled;

•  Afferent coupling (things that are coupled to me) vs Efferent coupling

(things that I couple to); Noun < Sentences < Phrases;

•  Follow the money;

•  Use personas;

44



Heuristics 3/5
3 archetypes we find in almost every software :

45



Heuristics 3/5
3 archetypes we find in almost every software :

•  Collaborative construction;

46



Heuristics 3/5
3 archetypes we find in almost every software :

•  Collaborative construction;

•  Execution;

47



Heuristics 3/5
3 archetypes we find in almost every software :

•  Collaborative construction;

•  Execution;

•  Business intelligence tracking monitoring;

48



Heuristics 4/5
•  Consistency

49



Heuristics 4/5
•  Consistency

•  Same rules but different semantics;

50



Heuristics 4/5
•  Consistency

•  Same rules but different semantics;

•  Warnings vs errors;

51



Heuristics 4/5
•  Consistency

•  Same rules but different semantics;

•  Warnings vs errors;

•  Synchronous (ordered) vs Asynchronous (unordered) [on a business point

of view, not a technical one]; Happy path vs divergent path;

52



Heuristics 4/5
•  Consistency

•  Same rules but different semantics;

•  Warnings vs errors;

•  Synchronous (ordered) vs Asynchronous (unordered) [on a business point

of view, not a technical one]; Happy path vs divergent path;

•  Responsibility Layers (see Evans);

53



Heuristics 4/5
•  Consistency

•  Same rules but different semantics;

•  Warnings vs errors;

•  Synchronous (ordered) vs Asynchronous (unordered) [on a business point

of view, not a technical one]; Happy path vs divergent path;

•  Responsibility Layers (see Evans);

•  Atomicity / Transactionality;

54



Heuristics 4/5
•  Consistency

•  Same rules but different semantics;

•  Warnings vs errors;

•  Synchronous (ordered) vs Asynchronous (unordered) [on a business point

of view, not a technical one]; Happy path vs divergent path;

•  Responsibility Layers (see Evans);

•  Atomicity / Transactionality;

•  Risks;

55



Heuristics 5/5
•  Strictness (do we restrict user) vs Allow the user to abuse the system and

monitor the abuse;

56



Heuristics 5/5
•  Strictness (do we restrict user) vs Allow the user to abuse the system and

monitor the abuse;

•  Start from the end;

57



Heuristics 5/5
•  Strictness (do we restrict user) vs Allow the user to abuse the system and

monitor the abuse;

•  Start from the end;

•  Let the human do it;

58



Brownfield DDD
Start by drawing the Current Model and the Desired Model. Make a small

step toward the Desired Model. Throw away both drawing models

regularly while in the process of leading the current model to the desired

model, so that desired model also evolved with the maturity of our

understanding.

59



Brownfield DDD
Have a wall were people write identified Technical Debt. Each time

someone stumble upon the same debt, put a dot in front of it. This helps

us identify the most critical debt.

60



Context Mapping
How do our different contexts communicate? 

61



Context Mapping
How do our different contexts communicate? 

Relationships fall into repeatable patterns..

62



Context Mapping 1/2
•  Shared kernel

63



Context Mapping 1/2
•  Shared kernel

•  Customer / supplier

64



Context Mapping 1/2
•  Shared kernel

•  Customer / supplier

•  Published language ("language from a long running domain")

65



Context Mapping 1/2
•  Shared kernel

•  Customer / supplier

•  Published language ("language from a long running domain")

•  Partnership

66



Context Mapping 1/2
•  Shared kernel

•  Customer / supplier

•  Published language ("language from a long running domain")

•  Partnership

•  Separate ways (rebuild the stuff you need)

67



Context Mapping 2/2
•  Anticorruption layer (translate from upstream to downstream model)

68



Context Mapping 2/2
•  Anticorruption layer (translate from upstream to downstream model)

•  Conformist (mimic upstream model)

69



Context Mapping 2/2
•  Anticorruption layer (translate from upstream to downstream model)

•  Conformist (mimic upstream model)

•  Open Host Service (public 3rd party api we cannot influence (google

maps)).

70



Context Mapping 2/2
•  Anticorruption layer (translate from upstream to downstream model)

•  Conformist (mimic upstream model)

•  Open Host Service (public 3rd party api we cannot influence (google

maps)).

•  Big Ball of Mud

71



Context Mapping 2/2
•  Anticorruption layer (translate from upstream to downstream model)

•  Conformist (mimic upstream model)

•  Open Host Service (public 3rd party api we cannot influence (google

maps)).

•  Big Ball of Mud

•  Put yourself on the map

72



CQRS
CQRS challenge the assumption that reading and writing are supposed to

share the same abstractions & models & databases & applications. 

73



CQRS
CQRS challenge the assumption that reading and writing are supposed to

share the same abstractions & models & databases & applications. 

So in short : "Split Write Model and Read Models" 

74



CQRS
CQRS challenge the assumption that reading and writing are supposed to

share the same abstractions & models & databases & applications. 

So in short : "Split Write Model and Read Models" 

The presentation : https://speakerdeck.com/mathiasverraes/fighting-

bottlenecks-with-cqrs

75

https://speakerdeck.com/mathiasverraes/fighting-bottlenecks-with-cqrs


Event Sourcing
Using object's *history* to reconstitute its *state*. The history is expressed

as a series of Domain events.

76



Event Sourcing
Using object's *history* to reconstitute its *state*. The history is expressed

as a series of Domain events.

The aggregate records events and protect invariant but does not expose

the state. Aggregate is the write model. State is exposed by projector

(one of the read models).

77



Event Sourcing
Using object's *history* to reconstitute its *state*. The history is expressed

as a series of Domain events.

The aggregate records events and protect invariant but does not expose

the state. Aggregate is the write model. State is exposed by projector

(one of the read models).

The presentation and some code at

https://speakerdeck.com/mathiasverraes/practical-event-sourcing

78

https://speakerdeck.com/mathiasverraes/practical-event-sourcing


Event Sourcing
Do not put invariant in the apply method because you couldn’t restore

the aggregate anymore if invariant change. It is then possible to have

aggregate that do not comply with new invariants and it is a business

decision to know what to do with these.

79



Event Sourcing
Projectors should be easy to write. Don’t use an ORM here since they will

slow the process down.

80



Testing the write model is like:

•  Given { previous events }

•  When { command }

•  Then { expected new events or expected exception }

Testing projector / read model is like:

•  Given { previous events }

•  Then { expected states }

81



82


